Detectability of excitatory versus inhibitory drive in an integrate-and-fire-or-burst thalamocortical relay neuron model.
نویسندگان
چکیده
Although inhibitory inputs are often viewed as equal but opposite to excitatory inputs, excitatory inputs may alter the firing of postsynaptic cells more effectively than inhibitory inputs. This is because spike cancellation produced by an inhibitory input requires coincidence in time, whereas an excitatory input can add spikes with less temporal constraint. To test for such potential differences, especially in the context of the function of thalamocortical (TC) relay nuclei, we used a stochastic "integrate-and-fire-or-burst" TC neuron model to quantify the detectability of excitatory and inhibitory drive in the presence and absence of the low-threshold Ca2+ current, I(T), and the hyperpolarization-activated cation conductance, I(sag). We find that excitatory inputs are generally superior drivers compared with inhibitory inputs in part because spontaneous activity of a postsynaptic neuron is not required in the case of excitatory drive. Interestingly, the presence of the low-threshold Ca2+ current, I(T) in a postsynaptic neuron allows the robust detection of inhibitory drive over a certain range of spontaneous and driven activity, a range that can be extended by the presence of the hyperpolarization-activated cation conductance, I(sag). These simulations suggest a possible reinterpretation of the role of inhibitory inputs, such as those to the thalamus.
منابع مشابه
Mode locking in a periodically forced integrate-and-fire-or-burst neuron model.
The minimal "integrate-and-fire-or-burst" (IFB) neuron model reproduces the salient features of experimentally observed thalamocortical relay neuron response properties, including the temporal tuning of both tonic spiking (i.e., conventional action potentials) and post-inhibitory rebound bursting mediated by the low-threshold Ca2+ current, I(T). In previous work focusing on experimental and IFB...
متن کاملDynamics of synaptically coupled integrate-and-fire-or-burst neurons.
The minimal integrate-and-fire-or-burst (IFB) neuron model reproduces the salient features of experimentally observed thalamocortical (TC) relay neuron response properties, including the temporal tuning of both tonic spiking (i.e., conventional action potentials) and postinhibitory rebound bursting mediated by a low-threshold calcium current. In this paper we consider networks of IFB neurons wi...
متن کاملFourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model.
We performed intracellular recordings of relay neurons from the lateral geniculate nucleus of a cat thalamic slice preparation. We measured responses during both tonic and burst firing modes to sinusoidal current injection and performed Fourier analysis on these responses. For comparison, we constructed a minimal "integrate-and-fire-or-burst" (IFB) neuron model that reproduces salient features ...
متن کاملThe effect of feedback inhibition on throughput properties of the dorsal lateral geniculate nucleus
The effect of feedback inhibition from thalamic reticular cells on retinogeniculate transmission by thalamocortical neurons of the dorsal lateral geniculate nucleus is analyzed using a minimal integrate-and-fire-or-burst network model. Potassium leakage conductances control the neuromodulatory state of the network and eliminate rhythmic bursting in the presence of spontaneous input. During osci...
متن کاملSynchronization and spindle oscillation in noisy integrate-and-fire-or-burst neurons with inhibitory coupling
We propose another integrate-and-fire model as a single neuron model. We study a globally coupled noisy integrate-and-fire model with inhibitory interaction using the Fokker-Planck equation and the Langevin equation, and find a reentrant transition of oscillatory states. Intermittent time evolutions of neuron firing are found in strongly inhibited systems. We propose another integrate-and-fire-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 23 شماره
صفحات -
تاریخ انتشار 2002